Glucocorticoids, Drug Transporters and Programming of the Fetal Brain

Stephen G. Matthews, PhD
Depts. Physiology, Ob-Gyn and Medicine
University of Toronto
Prenatal Environment: Maternal Adversity
Glucocorticoids

Transgenerational
Mechanisms

Transporters

Developing Brain:
Hippocampus
Hypothalamus

Stress
Endocrinology
Behaviour
Learning
Disease Susceptibility

• Timing of exposure
• Sex-specific
• Age-dependent
• Transgenerational
• Mechanisms
• Pituitary-adrenal development
• Maternal glucocorticoid therapy
 • neuroendocrine
• Programming mechanisms
• Fetal drug transport
 • placenta, blood-brain-barrier
Fetal HPA Axis

CRH mRNA
AVP mRNA

CRH
AVP

POMC mRNA

POMC
ACTH

Cortisol

GR
MR

Fetal Plasma Cortisol

- Sheep
- Pig
- Human
- Guinea-pig
- Horse

Fetal plasma cortisol (ng/ml)

Period before birth (days)

Glucocorticoids are a master switch in the fetal brain:

Gene transcription
Epigenetic modification
Outline

• Pituitary-adrenal development
• Maternal glucocorticoid therapy
 • neuroendocrine
• Programming mechanisms
• Fetal drug transport
 • placenta, blood-brain-barrier
Antenatal Glucocorticoid Therapy

• ~10% of pregnant women deliver preterm (term 40wk); increasing

• Glucocorticoids decrease respiratory distress syndrome (RDS)

• Recommended treatment: single course of synthetic glucocorticoid (GC) between 24-34 weeks

• Surveys of obstetrical practice: multiple courses of GCs (~11)
Antenatal GC: HPA Function (6-10yr)

Trier Stress Test

Mean salivary cortisol (nmol/l)

- PP/GC (n=81)
- PP/nonGC (n=43)
- Controls (n=85)

Time (min)
The Guinea Pig

- Long gestation species: neuroanatomically mature young
- Well-defined brain development profile
- Haemomonochorial placentation
- Functional corpus luteum (16-day)
- Mothers provide psychosocial, minimal metabolic support
Prenatal Glucocorticoid: Guinea Pig

Maternal Glucocorticoid Treatment (1mg/kg)

Neurogenesis	Brain Growth	Myelination
d40 | d50 | d60

Birth (70)

Monitor Development

Endocrine Behavior
Cardiovascular Morphological

24 80
Prenatal GC Exposure: Juvenile Female

Open-Field Exposure (Day24)

[Graph showing cortisol levels over time with significance levels indicated by *** and **].

Veh N=10
Beta N=8

P<0.05

Moisiadis, Kostaki, Matthews, SGI, 2012
Prenatal GC: Adult F₁ Male Offspring

Plasma Cortisol

- Veh
- Dex

ACTH (0.5µg/kg)

Pre 5 15 30 60 90 120

Time (Mins)

Plasma Cortisol (ng/ml)

CRH mRNA
AVP mRNA

POMC mRNA

Hippocampal MR mRNA

Region

CA1/2 CA3 CA4 DG

MR mRNA (ROD)

P<0.007

Liu et al, AJP 2001
Fetal HPA Axis:

- Metabolism, growth, repair, reproduction (manage resource allocation)
- GC affect expression >10% genome
- Modified regulation in chronic diseases

-Fully programmable-
• Pituitary-adrenal development
• Maternal glucocorticoid therapy
 • neuroendocrine
• Programming mechanisms
• Fetal drug transport
 • placenta, blood-brain-barrier
Mechanisms: GC Programming

• Direct actions
 • Structure
 • Wiring

• Epigenetic effects
 • GR POMC
 • MR CRH
Epigenetic Modification

Hippocampus
Hypothalamus
Pituitary
Placenta

The 2 main components of the epigenetic code
- DNA methylation
- Histone Modification
 - Acetylation
 - Methylation
 - Phosphorylation
 - Ubiquitination
 - Sumoylation

NATURE|Vol 441|11 May 2006
Prenatal GC: Fetal Hippocampus

Maternal sGC (1mg/kg)

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of Genes</th>
<th>Increased Expression</th>
<th>Decreased Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>sGC Exposure Ctrl vs sGC</td>
<td>1135</td>
<td>684</td>
<td>454</td>
</tr>
</tbody>
</table>

Crudo et al, Endocrinology, 2013
Fetal Hippocampal Methylation: Gd52

Crudo et al, Endocrinology, 2013
Fetal Hippocampal Methylation: Gd52

Development
Gd52 vs Gd65

Effect of sGC
52 vs 52Beta

Mineralocorticoid Receptor (NR3C2)

- Timing of exposure critical
- Cortisol (MR/GR) vs synthetic GC (GR)

- Multidimensional analysis

Crudo et al, Endocrinology, 2013
Outline

- Pituitary-adrenal development
- Maternal glucocorticoid therapy
 - neuroendocrine
- Programming mechanisms
- Fetal drug transport
 - placenta, blood-brain-barrier
Multidrug Resistance P-Glycoprotein (P-gp)

- ABC superfamily
- Tumour cells
- Normal tissues
- Placenta
- Blood-brain barrier
- Wide substrate specificity
- Glucocorticoids
- ABCB1

Nature Reviews | Cancer
• 75% women take prescription medication in pregnancy
• 10% potential teratogenic drugs
 • Glucocorticoids: 1 in 10
 • Anti-HIV: 1 in 1000
 • Anticancer: 1 in 1000
 • Antidepressants: 1 in 10
 • Anti-arrhythmia

Andrade et al 2004; Irvine et al, 2010
Placenta: P-glycoprotein (P-gp)
ABCB1 P-gp: Human Placenta

ABCB1 mRNA

Weeks of gestation

P-gp Protein

P-gp:Gß protein ratio

Sun, Kingdom, Baczyck, Lye, Matthews & Gibb, Placenta 2005
• Placental protection decreases
• Fetal BBB protection?
Fetal Protection: Blood Brain Barrier

- Fetal Brain Capillary
- Brain
- tight junction
- P-gp
- Drug
What Modulates P-gp?

- **Glucocorticoids** Petropoulos S et al, 2010, Placenta
- **Infection/Cytokines** Bloise E et al, 2013, PLoS One
- **Growth factors** Baello S et al, 2013 submitted
- **Oxygen** Lye P et al, 2013, Placenta
- **SSRIs** Bhuiyan M et al, 2012 Reprod Sci
• Placental protection decreases
• Fetal BBB protection increases
• P-gp responsive:
 • Glucocorticoids
 • Infection-cytokines
 • Oxygen
• Novel treatment modalities
Prenatal Environment: Maternal Adversity

Glucocorticoids

Transporters

Developing Brain: Hippocampus Hypothalamus

• Timing of exposure
• Sex-specific
• Age-dependant
• Transgenerational
• Mechanisms

Stress ↔ Behaviour
Endocrinology Learning

Disease Susceptibility
Steve Matthews
Alice Kostaki
Li Liu
Marcus Andrews
Grazyna Kalabis
Dawn Owen
Liz Dunn
Sonja Banjanin
Majid Iqbal
Jeff Emack
Amita Kapoor
Elaine Setiawan
Sophie Petropoulos
Melanie Audette
Aumee Bhuiyan
Vasilis Moisiadis

University of Toronto
John MacDonald

University of Ottawa
Bill Gibb

McGill University
Moshe Szyf
Ariane Crudo
Jane Joanna Pappas
Michael Meaney
MAVAN Program

Univ. of Southampton, UK
Mark Hanson
David Phillips
Brain Microvessel Endothelial Cells

Iqbal & Matthews, Endocrinology 2011